前言:一篇好文章的誕生,需要你不斷地搜集資料、整理思路,本站小編為你收集了豐富的導(dǎo)數(shù)在高中數(shù)學(xué)的地位主題范文,僅供參考,歡迎閱讀并收藏。
關(guān)鍵詞:高中數(shù)學(xué)教材 導(dǎo)數(shù)部分 數(shù)學(xué)文化 滲透
數(shù)學(xué)文化指數(shù)學(xué)知識、數(shù)學(xué)發(fā)展歷史,還指數(shù)學(xué)精神、數(shù)學(xué)思維方法、研究方法等。由此可見,數(shù)學(xué)文化不僅博大精深,而且對學(xué)習(xí)數(shù)學(xué)還有很大的助力。就數(shù)學(xué)思維方法來說,在學(xué)習(xí)數(shù)學(xué)的時(shí)候,思維方法對于解題是非常重要的一方面,運(yùn)用良好的思維方法可以在學(xué)習(xí)數(shù)學(xué)的時(shí)候,減輕壓力,將書本上的知識點(diǎn)活學(xué)活用。對于教師而言,學(xué)生活泛的數(shù)學(xué)思維方法,可以使教師在教學(xué)的時(shí)候更加快捷,在拓展知識的時(shí)候,也比較容易把握尺度。在高中,導(dǎo)數(shù)對于學(xué)生來說是一個(gè)難點(diǎn),而教師很少將導(dǎo)數(shù)部分的數(shù)學(xué)文化對學(xué)生滲透,造成了學(xué)生積壓的問題較多,難以解答。本文就高中數(shù)學(xué)教材中“導(dǎo)數(shù)”部分?jǐn)?shù)學(xué)文化的滲透進(jìn)行思考。
一、高中數(shù)學(xué)教材中“導(dǎo)數(shù)”部分?jǐn)?shù)學(xué)文化滲透現(xiàn)狀
(一)滲透意識薄弱
對于高中生來說,學(xué)習(xí)數(shù)學(xué)最重要的就是將書上的知識點(diǎn)消化,并且良好的運(yùn)用。教師作為授課的主體,必須要運(yùn)用正確的方法將知識傳授給學(xué)生。現(xiàn)階段的高中數(shù)學(xué)教學(xué)情況是,教師對數(shù)學(xué)文化的滲透意識相當(dāng)薄弱,有些教師甚至沒有滲透意識。導(dǎo)數(shù)作為高中數(shù)學(xué)學(xué)習(xí)的重要部分,在沒有數(shù)學(xué)文化滲透的情況下,幾乎所有的學(xué)生都沒有辦法迅速的理解,只能是死記硬背,再經(jīng)過題海戰(zhàn)術(shù)來學(xué)習(xí)。這樣只有少數(shù)的學(xué)生能夠理解書本上的知識,多數(shù)的學(xué)生對于導(dǎo)數(shù)依然是不理解,不會(huì)運(yùn)用。因此,高中數(shù)學(xué)教材中導(dǎo)數(shù)學(xué)習(xí)較差的一個(gè)原因就是沒有進(jìn)行數(shù)學(xué)文化的滲透。
(二)教學(xué)模式固定
教師在教授高中導(dǎo)數(shù)知識的時(shí)候,一般是經(jīng)過大量的習(xí)題來舉例,將導(dǎo)數(shù)的知識通過習(xí)題直接表現(xiàn)出來,讓學(xué)生一邊做題,一邊學(xué)習(xí)知識。這種方式對于部分學(xué)生來說,確實(shí)很不錯(cuò),效果也很好。但高中數(shù)學(xué)的導(dǎo)數(shù)部分所處地位非常重要,國家又在大力進(jìn)行教育改革,因此,原有的教學(xué)模式很難適應(yīng)新的情況。而數(shù)學(xué)文化的滲透作為有效的方式卻沒有得到較好的實(shí)施,原因在于教師教學(xué)模式的固定。
(三)未形成規(guī)模
高中數(shù)學(xué)教材中“導(dǎo)數(shù)”部分?jǐn)?shù)學(xué)文化沒有得到良好的滲透,其中一個(gè)重要原因就是沒有形成規(guī)模。任何一種教學(xué)方式,只有經(jīng)過大量的實(shí)踐,才能廣泛的應(yīng)用到教師和學(xué)生中。數(shù)學(xué)文化的滲透作為一種新式的教學(xué)方式,很少有教師敢于嘗試,多半是望而卻步。主要原因是高中數(shù)學(xué)是學(xué)生學(xué)習(xí)階段的一個(gè)轉(zhuǎn)折點(diǎn),一旦出現(xiàn)偏差,對學(xué)生的影響非常大,而且在社會(huì)上也會(huì)引起較大的反響。眾多的因素加在一起,導(dǎo)致數(shù)學(xué)文化的滲透沒有機(jī)會(huì)形成規(guī)模。小范圍的實(shí)踐由于缺乏政策上的支持和有力的指導(dǎo),也沒能廣泛的應(yīng)用,最后不了了之。因此,高中數(shù)學(xué)教材中“導(dǎo)數(shù)”部分?jǐn)?shù)學(xué)文化的滲透,最主要的現(xiàn)狀就是沒有形成規(guī)模。
二、高中數(shù)學(xué)教材中“導(dǎo)數(shù)”部分?jǐn)?shù)學(xué)文化的滲透
(一)數(shù)學(xué)史知識的滲透
學(xué)生在學(xué)習(xí)高中數(shù)學(xué)導(dǎo)數(shù)知識的時(shí)候,由于是一個(gè)全新的概念,不同于在小學(xué)就有所接觸的方程等知識。因此,學(xué)生對于導(dǎo)數(shù)的歷史比較感興趣,教師可以利用這一點(diǎn),對學(xué)生進(jìn)行數(shù)學(xué)史知識的滲透,告訴學(xué)生導(dǎo)數(shù)的由來、發(fā)展和在實(shí)際生活、工作中的作用。這樣就可以調(diào)動(dòng)學(xué)生積極性,撇去導(dǎo)數(shù)的枯燥乏味,使之變?yōu)榛罘骸⒂腥ぁW(xué)生在學(xué)習(xí)的時(shí)候,就會(huì)更加的努力,刻苦專研。
(二)數(shù)學(xué)思想方法的滲透
學(xué)生在學(xué)習(xí)導(dǎo)數(shù)的時(shí)候,算法是比較重要的一個(gè)方面。將算法活學(xué)活用,能夠保證在解題的時(shí)候不會(huì)局限于某一種方法,而是將學(xué)習(xí)的知識點(diǎn)應(yīng)用到算法中,從較少的信息量中提取出較多的有用信息,從而解答出較為復(fù)雜的問題。因此,數(shù)學(xué)思想方法的滲透是一個(gè)非常符合實(shí)際的滲透方法,在這里,我們以算法思想為例。人教版高中數(shù)學(xué)教材中,《導(dǎo)數(shù)及其應(yīng)用》一章在不同程度滲透了算法的思想。例如“牛頓法——用導(dǎo)數(shù)方法求方程的近似解”這一部分,其中的算法框圖就有算法的滲透。
(三)加強(qiáng)導(dǎo)數(shù)部分?jǐn)?shù)學(xué)文化的滲透
在前文中,我們提到導(dǎo)數(shù)部分?jǐn)?shù)學(xué)文化的滲透具有意識淡薄,教學(xué)模式固定以及未形成規(guī)模的現(xiàn)狀。對于這三個(gè)重要的現(xiàn)狀,首先,學(xué)校要對導(dǎo)數(shù)部分?jǐn)?shù)學(xué)文化的滲透做出指示,加強(qiáng)教師的滲透意識。其次,通過對教師的系統(tǒng)培訓(xùn),促進(jìn)教學(xué)模式的改變,從而加強(qiáng)導(dǎo)數(shù)部分?jǐn)?shù)學(xué)文化的滲透。第三,針對未形成規(guī)模的問題,可以在全國選撥一些教育質(zhì)量較高的學(xué)校作為試點(diǎn),進(jìn)行實(shí)踐,找出導(dǎo)數(shù)部分?jǐn)?shù)學(xué)文化滲透的最佳方式和方法,之后逐步地應(yīng)用到所有的高中數(shù)學(xué)教學(xué)中。
三、總結(jié)
現(xiàn)階段,教學(xué)方式的多變引起了教育界的廣泛關(guān)注,每一位教師都希望學(xué)生能夠?qū)旧系闹R完全消化和應(yīng)用,就高中數(shù)學(xué)教材中“導(dǎo)數(shù)”的知識而言,必須進(jìn)行一定的數(shù)學(xué)文化滲透才能使學(xué)生提高學(xué)習(xí)積極性,突破固有的思維模式,使成績上升。在今后的導(dǎo)數(shù)部分?jǐn)?shù)學(xué)文化滲透中,教師要不斷地探索,廣泛地交流,使數(shù)學(xué)文化的滲透成為一種應(yīng)用廣泛,效用較強(qiáng)的教學(xué)方式。
參考文獻(xiàn):
[1]馮艷.滲透數(shù)學(xué)思想,提高學(xué)生素養(yǎng)[J].科技信息,2009(13).
【關(guān)鍵詞】高中數(shù)學(xué);生成;課堂
一、改變教學(xué)理念
高中數(shù)學(xué)的生成性課堂教學(xué),其主要目的在于合理激發(fā)學(xué)生自主學(xué)習(xí)的熱情,提高學(xué)生自主學(xué)習(xí)的能力,通過學(xué)生積極主動(dòng)地思考,使得他們能夠掌握相關(guān)知識。因此,教師應(yīng)在開展課堂教學(xué)活動(dòng)期間,明確自己的定位。在傳統(tǒng)教學(xué)的過程中,高中數(shù)學(xué)教師的教學(xué)模式一般局限在先對相關(guān)概念包括定義、定理等進(jìn)行解釋,然后對課本中的例題進(jìn)行講解,最后要求學(xué)生根據(jù)已講解的知識,進(jìn)行課后訓(xùn)練。在整個(gè)教學(xué)過程中,教師往往處于教學(xué)的主體地位,其對課堂教學(xué)內(nèi)容的安排也均嚴(yán)格依照課本中知識的順序。對于學(xué)生而言,他們處于被動(dòng)接受的狀態(tài),對教師所講解的內(nèi)容進(jìn)行記憶,并依照講解的模式,完成習(xí)題的訓(xùn)練。相對而言,高中數(shù)學(xué)的抽象性相對較強(qiáng),學(xué)生對數(shù)學(xué)案例理解的難度相對較大,對學(xué)生綜合能力的考查也較為明顯。因此,如若僅僅采用傳統(tǒng)的教學(xué)模式,則嚴(yán)重影響課堂教學(xué)的效果。
導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用的教學(xué)設(shè)計(jì)與實(shí)施的探究教學(xué)時(shí),教師可以通過初等方法與導(dǎo)數(shù)方法在研究函數(shù)單調(diào)性過程中比較體會(huì)導(dǎo)數(shù)方法在研究函數(shù)性質(zhì)過程中的一般性與有效性。感受和體會(huì)數(shù)學(xué)自身發(fā)展的一般規(guī)律,對教學(xué)過程中所應(yīng)使用的教學(xué)方法進(jìn)行確定,并對學(xué)生在教學(xué)期間是否會(huì)出現(xiàn)枯燥、難以理解的感受進(jìn)行預(yù)想,對其所能達(dá)到的效果進(jìn)行預(yù)判,即學(xué)生所能掌握的知識量等。
二、給學(xué)生自主學(xué)習(xí)的時(shí)間與空間
生成性教學(xué)課堂的主要任務(wù)在于提升學(xué)生自主學(xué)習(xí)的能力,激發(fā)學(xué)生自主學(xué)習(xí)的熱情。在《新課程標(biāo)準(zhǔn)》中,也將注重學(xué)生的發(fā)展作為要求而明確指出。根據(jù)相關(guān)調(diào)查研究的結(jié)果顯示,在高中數(shù)學(xué)的課堂教學(xué)過程中,只有通過學(xué)生反復(fù)實(shí)踐,擁有自己的體會(huì)以及思路,才能夠深層次的挖掘?qū)W生的潛能,為今后的學(xué)習(xí)發(fā)展奠定基礎(chǔ)。在傳統(tǒng)的教學(xué)過程中,整堂課程一般均是由教師進(jìn)行宣講,學(xué)生根據(jù)教師所講的內(nèi)容進(jìn)行理解以及記錄。對于學(xué)生而言,就是跟著教師的思路走,并沒有自主學(xué)習(xí)的時(shí)間,也沒有在課堂教學(xué)期間形成自己的思路,這對學(xué)生自主學(xué)習(xí)能力的提升產(chǎn)生極大的負(fù)面影響。
筆者認(rèn)為,高中數(shù)學(xué)的教學(xué)過程中,課程的難度相對較大,學(xué)生對相關(guān)知識的理解以及運(yùn)用情況將會(huì)對其數(shù)學(xué)知識的掌握、數(shù)學(xué)能力的提升產(chǎn)生決定性的影響。因而,作為高中數(shù)學(xué)的任課教師應(yīng)在開展教學(xué)的過程中,注重對學(xué)生自主學(xué)習(xí)能力的提升、自主學(xué)習(xí)熱情的激發(fā)等。這就要求教師在對相關(guān)知識進(jìn)行宣講的同時(shí),給予學(xué)生一定的時(shí)間以及空間,從而使得學(xué)生能夠在該段時(shí)間中,對教師所講解的內(nèi)容進(jìn)行“消化吸收”,并根據(jù)教師的授課思路,形成具有自身特點(diǎn)的解題思路。實(shí)現(xiàn)高中數(shù)學(xué)生成性的課堂,還需要加強(qiáng)教師與學(xué)生之間的溝通。在經(jīng)過一段時(shí)間的思考之后,學(xué)生往往會(huì)對教師所講解的內(nèi)容以及教學(xué)思路有一定的想法,此時(shí)就需要教師與學(xué)生之間、學(xué)生與學(xué)生之間進(jìn)行良好的溝通,闡述自己的思路。此時(shí),教師應(yīng)指出學(xué)生思路中的不足,對學(xué)生所存在的疑惑進(jìn)行解答,對于集中存在的問題進(jìn)行二次講解,對學(xué)生思路中的錯(cuò)誤進(jìn)行明示。在經(jīng)過一段時(shí)間的思考,并得到教師的指點(diǎn)之后,學(xué)生往往能夠加深知識的理解程度。
數(shù)學(xué)教師在實(shí)際教學(xué)的過程中,應(yīng)合理的控制學(xué)生自主學(xué)習(xí)的時(shí)間。如果時(shí)間過于短暫,則不能夠使得學(xué)生向深層次思考問題;如果時(shí)間過長,則將會(huì)影響課堂教學(xué)的進(jìn)展。此外,教師應(yīng)對學(xué)生自主提問的“度”進(jìn)行合理的控制,盡量指引學(xué)生脫離知識的表面,向其深層次進(jìn)行挖掘。
三、尊重學(xué)生的認(rèn)知規(guī)律及特點(diǎn)
現(xiàn)階段,由于學(xué)生數(shù)量的大幅增加,每名教師所面對的學(xué)生數(shù)量成倍增長。面對眾多的學(xué)生,教師應(yīng)對知識的講解難度進(jìn)行合理的把握。在傳統(tǒng)教學(xué)的過程中,教師一般會(huì)根據(jù)教學(xué)內(nèi)容的安排,對教學(xué)知識的難度按教學(xué)要求進(jìn)行確定,而對學(xué)生的實(shí)際接受能力并沒有嚴(yán)格考察,這就將會(huì)對知識學(xué)習(xí)的效果產(chǎn)生極大的影響。因此,在實(shí)際教學(xué)的過程中,教師應(yīng)首先對班級內(nèi)大多數(shù)學(xué)生的理解能力進(jìn)行了解,并以此作為基礎(chǔ),對相關(guān)知識的深入程度進(jìn)行控制。例如,筆者在實(shí)際教學(xué)的過程中,往往會(huì)將知識講解的深入程度控制在基本均能接受的程度,利用課堂剩余的時(shí)間,將知識進(jìn)行深入講解。如此一來,接受能力一般的學(xué)生能夠?qū)⒒A(chǔ)知識進(jìn)行理解并掌握,而對于接受能力較強(qiáng)的學(xué)生,通過深入的講解某部分知識,產(chǎn)生對其拔高的作用。
在對新知識進(jìn)行學(xué)習(xí)的過程中,學(xué)生均會(huì)經(jīng)歷由不懂到懂、由不會(huì)到會(huì)再到精的過程。而在此期間,其出現(xiàn)不足或者錯(cuò)誤的幾率相對較大。對于學(xué)生所出現(xiàn)的錯(cuò)誤,任課教師不應(yīng)采用批評的語氣進(jìn)行訓(xùn)斥,而是應(yīng)該將學(xué)生的錯(cuò)誤當(dāng)作一種特殊的教學(xué)資源。通過分析產(chǎn)生錯(cuò)誤的原因,教導(dǎo)改正的方法,傳授避免錯(cuò)誤的措施,提升學(xué)生的學(xué)習(xí)效率。同時(shí),教師掌握了學(xué)生的認(rèn)知規(guī)律。
關(guān)鍵詞:新課改 高中數(shù)學(xué) 教學(xué)方法
新課程標(biāo)準(zhǔn)要求高中教師在高中課堂教學(xué)中關(guān)注學(xué)生數(shù)學(xué)思維水平的提高,要注重培養(yǎng)學(xué)生的應(yīng)用數(shù)學(xué)的意識。此外,新課改還認(rèn)為新時(shí)代下高中數(shù)學(xué)必須同現(xiàn)代信息技術(shù)結(jié)合,將數(shù)學(xué)融入生活,融入實(shí)際。這樣一來,就要求高中數(shù)學(xué)在教學(xué)過程中實(shí)現(xiàn)華麗的轉(zhuǎn)身。
一、轉(zhuǎn)變傳統(tǒng)教學(xué)觀念,凸顯學(xué)生主體地位
1.教學(xué)理念科學(xué)化。教學(xué)理念作為一種指導(dǎo)思想,能確保高中數(shù)學(xué)課堂教學(xué)方向正確性。也就是說,如果教學(xué)理念不正確,哪怕在先進(jìn)的教科書和教學(xué)方法也不能培育出優(yōu)秀的學(xué)生。傳統(tǒng)教學(xué)理念屬于灌輸式的,主要以教師為主導(dǎo),在這樣的課堂中,學(xué)生只是被動(dòng)的坐在座位上聽、記,缺乏自主性和創(chuàng)新型。所以,要實(shí)現(xiàn)高中數(shù)學(xué)教學(xué)的轉(zhuǎn)變,首先就是要轉(zhuǎn)變教學(xué)理念,確保其科學(xué)化。[1]
2.教學(xué)方法靈活性。有了科學(xué)新穎的教學(xué)理念,如果沒有靈活的教學(xué)方法予以配合的話,也不能取得良好的效果。實(shí)踐證明,傳統(tǒng)的教學(xué)方法落后,影響教學(xué)效果,所以新課改背景下,要實(shí)現(xiàn)高中數(shù)學(xué)教學(xué)的轉(zhuǎn)變,就需要及時(shí)優(yōu)化教學(xué)方法,確保教學(xué)方法的靈活性。也就是說在教學(xué)中教師要有意識的將傳統(tǒng)的教學(xué)方式進(jìn)行改革優(yōu)化,并結(jié)合學(xué)生的認(rèn)知規(guī)律和心理特征,結(jié)合教材的主要內(nèi)容實(shí)現(xiàn)教學(xué)方法的靈活轉(zhuǎn)變。
3.凸顯學(xué)生的主體地位。眾所周知,教學(xué)活動(dòng)是教師的教與學(xué)生的學(xué)的一個(gè)互動(dòng)的過程,而素質(zhì)教育也要求教學(xué)過程中要凸顯學(xué)生的主體地位。所以說,高中的數(shù)學(xué)教學(xué)中,教師就要發(fā)揮其主導(dǎo)作用,通過對教材的分析和提煉,合理利用各種教學(xué)理念和方法,充分引導(dǎo)學(xué)生積極參與到高中數(shù)學(xué)的整個(gè)教學(xué)過程中來。這樣一來,高中數(shù)學(xué)教學(xué)不再僅僅是教師的講解和教授,還包括了學(xué)生的積極主動(dòng)的思考的過程。
4.端正評價(jià)學(xué)生的態(tài)度。傳統(tǒng)的應(yīng)試教育中,成績是評價(jià)學(xué)生表現(xiàn)和學(xué)習(xí)效果的主要標(biāo)準(zhǔn),盡管這樣的方法有一定的可行性,但是對于學(xué)生來說,無疑會(huì)打擊其學(xué)習(xí)的興頭和積極性。高中學(xué)生,尤其是高三學(xué)生,其思想和精神狀態(tài)在繁重的學(xué)習(xí)壓力下較為敏感,如果僅以考試成績作為衡量學(xué)生優(yōu)秀與否的標(biāo)準(zhǔn),那么這樣不僅不能激發(fā)學(xué)生的興趣,還有很大的可能性會(huì)磋商學(xué)生學(xué)習(xí)的積極性。所以,新課改就要求轉(zhuǎn)變傳統(tǒng)的教學(xué)評價(jià)的觀念和思想,將應(yīng)試教育的評價(jià)手段轉(zhuǎn)變?yōu)樗刭|(zhì)教育的評價(jià)方式。所以高中教師要認(rèn)識到評價(jià)學(xué)生,成績固然重要,但并不是最重要且唯一的評價(jià)方式,每一位教師都應(yīng)該將鼓勵(lì)和贊賞作為評價(jià)的方法和手段,幫助學(xué)生樹立學(xué)習(xí)的信心,增強(qiáng)其學(xué)習(xí)的積極性。
二、借助現(xiàn)代教學(xué)工具
1.借助多媒體,實(shí)現(xiàn)教學(xué)效果的轉(zhuǎn)變。時(shí)代的發(fā)展為教學(xué)帶來了諸多的便利,當(dāng)今時(shí)代下,網(wǎng)絡(luò)技術(shù)在全國各行各業(yè)都取得了較好的成績。而在高中課堂教學(xué)中,借助多媒體的方式,能夠?qū)鹘y(tǒng)的課堂轉(zhuǎn)變?yōu)楦咝У恼n堂。新課改的背景下,必須實(shí)現(xiàn)教育體制的改革,而以計(jì)算機(jī)為主的多媒體教育,成為新課改背景下的寵兒,成為教師教授、學(xué)生學(xué)習(xí)的重要工具。在高中數(shù)學(xué)的教學(xué)課堂上,教師可以通過多媒體的多種方式增強(qiáng)學(xué)生的理解。
2.教師利用多媒體實(shí)現(xiàn)知識儲(chǔ)備和更新的轉(zhuǎn)變。眾所周知,網(wǎng)絡(luò)資源十分豐富,高中數(shù)學(xué)教師如果能夠有意識的借助網(wǎng)絡(luò)教學(xué)資源,主動(dòng)豐富自身的知識儲(chǔ)備和知識積累,那么就會(huì)取得良好的效果。借助多媒體資源,教師的知識儲(chǔ)備和積累實(shí)現(xiàn)了方式的轉(zhuǎn)變,不再受到時(shí)間和地域的限制。[2]
2.3 現(xiàn)代化的多媒體技術(shù)實(shí)現(xiàn)了教學(xué)手段的轉(zhuǎn)變。新時(shí)期,利用多媒體技術(shù)能夠?qū)⒔虒W(xué)手段不斷擴(kuò)充和增加,尤其是在高中數(shù)學(xué)的教學(xué)過程中,多媒體可以將數(shù)學(xué)與現(xiàn)代化結(jié)合起來,不僅能夠培養(yǎng)學(xué)生的數(shù)學(xué)思維,還能夠培養(yǎng)學(xué)生的多媒體技能和解決實(shí)際問題的能力。基本而言,借助多媒體技術(shù),不斷革新已有的教學(xué)手段,能夠激發(fā)學(xué)生學(xué)習(xí)的積極性,緩解繁重的學(xué)習(xí)壓力,時(shí)刻保持學(xué)生健康的身心,確保其主觀能動(dòng)性的發(fā)揮。
三、鞏固延伸,總結(jié)課堂教學(xué)
在新課改背景下,高中數(shù)學(xué)教師不僅要關(guān)注學(xué)生在課堂上的表現(xiàn),還需要關(guān)注學(xué)生的課堂以外的表現(xiàn)和學(xué)習(xí)能力,高中數(shù)學(xué)教學(xué)的轉(zhuǎn)變也表現(xiàn)在拓展課堂教學(xué)內(nèi)容。為此,高中數(shù)學(xué)教師必須做到以下幾點(diǎn):
1.及時(shí)總結(jié)課堂教學(xué),搭建數(shù)學(xué)錯(cuò)題整理平臺。也就是說,隨著新課標(biāo)的提出,高中數(shù)學(xué)所要考查的內(nèi)容也更加復(fù)雜,形式也變得更加靈活多樣。在這樣的背景下,學(xué)生在通過練習(xí)題進(jìn)行鞏固時(shí)可能會(huì)因?yàn)槟承╊}型而做錯(cuò)。這時(shí),教師就應(yīng)該鼓勵(lì)學(xué)生準(zhǔn)備錯(cuò)題本,將平時(shí)做錯(cuò)的一些題整理到錯(cuò)題本內(nèi)。久而久之,這些題越整理越多,就會(huì)成為一個(gè)優(yōu)秀的錯(cuò)題整理平臺。課后學(xué)生自主或者在教師的引導(dǎo)下,對這些錯(cuò)題進(jìn)行觀察、鞏固與思考,從而確保學(xué)習(xí)效果。[3]
2.教師也要轉(zhuǎn)變觀念,改變以往的以“題海戰(zhàn)術(shù)”為主要方法的手段。尤其是高中數(shù)學(xué),重點(diǎn)是學(xué)生掌握所學(xué)知識并會(huì)運(yùn)用所學(xué)知識,這就要通過一定的練習(xí),是一個(gè)循序漸進(jìn)的過程。所以,教師要轉(zhuǎn)變觀念,從學(xué)生的實(shí)際情況出發(fā),通過總結(jié),以便能夠提高高中數(shù)學(xué)教學(xué)效果,實(shí)現(xiàn)教學(xué)轉(zhuǎn)變。[4]
四、結(jié)束語
綜上所述,實(shí)現(xiàn)高中數(shù)學(xué)教學(xué)的轉(zhuǎn)變是時(shí)代的要求,也是素質(zhì)教育的根本體現(xiàn)。廣大高中數(shù)學(xué)教師應(yīng)該清醒的認(rèn)識到這一點(diǎn),嚴(yán)格遵照新課標(biāo)所提出的要求,秉持認(rèn)真負(fù)責(zé)的原則和態(tài)度,從教學(xué)方式入手,實(shí)現(xiàn)高中數(shù)學(xué)教學(xué)的轉(zhuǎn)變。為此,高中教師必須從自身入手,及時(shí)更新教學(xué)理念,并有意識的優(yōu)化課堂教學(xué)的結(jié)構(gòu),只有這樣才能確保高中數(shù)學(xué)教學(xué)的轉(zhuǎn)變。
參考文獻(xiàn):
[1] 朱達(dá)峰.新課程背景下高中數(shù)學(xué)有效課堂教學(xué)引入的十種方法[J].數(shù)學(xué)學(xué)習(xí)與研究,2011,(03).
[2] 鄭上典. 關(guān)于高中數(shù)學(xué)導(dǎo)數(shù)部分內(nèi)容的認(rèn)識及其教學(xué)方法[J]. 中國科教創(chuàng)新導(dǎo)刊,2012,(27).
高中數(shù)學(xué) 教學(xué)改革 創(chuàng)新
數(shù)學(xué)是學(xué)生在校期間學(xué)習(xí)的一門基礎(chǔ)學(xué)科,擔(dān)負(fù)著提高學(xué)生數(shù)學(xué)素養(yǎng)的重任。數(shù)學(xué)學(xué)科自我監(jiān)控能力的培養(yǎng)訓(xùn)練是培養(yǎng)學(xué)生數(shù)學(xué)思維能力的關(guān)鍵。隨著新課程標(biāo)準(zhǔn)的深入實(shí)施,大多數(shù)教師都比較重視課堂教學(xué)的革新,現(xiàn)在,課堂的教學(xué)觀念、課堂的教學(xué)形式和教學(xué)水平都發(fā)生了質(zhì)的變化。但由于長期以來的傳統(tǒng)教育的影響,仍有許多與新課程不相符的地方需要我們改進(jìn)。標(biāo)準(zhǔn)新了,要求高了,教師必須改進(jìn)教學(xué)方法,積極探索適合高中生數(shù)學(xué)學(xué)習(xí)的教學(xué)方式,時(shí)刻保持研究與創(chuàng)新的態(tài)度,以淵博的學(xué)識、扎實(shí)的基礎(chǔ)知識和積極的人生態(tài)度來影響學(xué)生。
1.高中數(shù)學(xué)教學(xué)中存在的問題。數(shù)學(xué)是一切科學(xué)和技術(shù)的基礎(chǔ),因而數(shù)學(xué)的重要作用和地位是不容置疑的。隨著現(xiàn)代科學(xué)技術(shù)的飛速發(fā)展,數(shù)學(xué)與其他科學(xué)之間的相互交叉,相互滲透,大量的數(shù)學(xué)方法在科學(xué)研究和各個(gè)生產(chǎn)領(lǐng)域被成功應(yīng)用,這些都顯示了數(shù)學(xué)的巨大作用。高中數(shù)學(xué)的教學(xué)任務(wù)就是要通過教學(xué)活動(dòng)讓學(xué)生掌握數(shù)學(xué)思想和方法,展示數(shù)學(xué)在解決實(shí)際問題中的適用性和有效性,并能用數(shù)學(xué)知識分析問題和解決實(shí)際問題的能力,使學(xué)生初步具備能深入自學(xué)數(shù)學(xué)的能力和應(yīng)用數(shù)學(xué)的能力,即數(shù)學(xué)素質(zhì)的培養(yǎng)。但現(xiàn)在的高中數(shù)學(xué)教育中,有許多令人不滿意的地方,改革也迫在眉睫,就高中數(shù)學(xué)教學(xué)而言存在以下幾個(gè)問題。
(1)現(xiàn)代技術(shù)的教育手段運(yùn)用不足。高中數(shù)學(xué)在強(qiáng)調(diào)數(shù)學(xué)素質(zhì)教育,創(chuàng)新能力培養(yǎng)的今天,教學(xué)手段也應(yīng)不斷更新,各種數(shù)學(xué)軟件包,計(jì)算機(jī)輔助教學(xué)以及數(shù)學(xué)實(shí)驗(yàn)的介人,使得我們的教學(xué)手段更具有現(xiàn)代化,效果更好。而這些工具我們很少用到高中數(shù)學(xué)的教學(xué)中,依然是教師在黑板上重復(fù)著定理的推導(dǎo),定理的證明,學(xué)生在聽的單一教學(xué)方式,這樣很難減少課時(shí)數(shù),很難改變學(xué)生被動(dòng)學(xué)習(xí)的狀態(tài),不能實(shí)現(xiàn)師生互動(dòng),雙向交流。
(2)教學(xué)內(nèi)容的局限。眾所周知,現(xiàn)在高中數(shù)學(xué)課程的內(nèi)容,大都是新舊交替,內(nèi)容陳1日,基本上一應(yīng)試教育為目的的框架,突出的問題為以理論知識和邏輯推導(dǎo)的傳授為主,主要尋求問題的解析解,缺乏數(shù)值計(jì)算,重在許許多多的變換技巧,缺乏現(xiàn)代數(shù)學(xué)的應(yīng)用性,信息量少,不能體現(xiàn)現(xiàn)代數(shù)學(xué)方法,這使得高中數(shù)學(xué)內(nèi)容滯后實(shí)際需要。同時(shí)這種重技巧的訓(xùn)練使得課程內(nèi)容多,而學(xué)時(shí)少,師生共同趕進(jìn)度,于是犧牲應(yīng)用,多講理論,深?yuàn)W的理論使學(xué)生學(xué)習(xí)興趣不高,嚴(yán)重影響教學(xué)質(zhì)量和學(xué)生求知用學(xué)的積極性,更不要說對學(xué)生進(jìn)行數(shù)學(xué)素質(zhì)教育了,學(xué)生的學(xué)習(xí)是為了應(yīng)付考試,高中數(shù)學(xué)的學(xué)習(xí)進(jìn)入一種不良循環(huán),很多學(xué)生學(xué)習(xí)厭倦,當(dāng)用到數(shù)學(xué)知識時(shí),才感到數(shù)學(xué)的重要,為時(shí)已晚。
2.實(shí)施教學(xué)改革的探索。在教學(xué)中,通過師生交流和相互作用,教師要激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,注重不同學(xué)生的素質(zhì),教授給符合學(xué)生要求的數(shù)學(xué)知識,真正培養(yǎng)學(xué)生分析,解決問胚的能力。這些問題是培養(yǎng)創(chuàng)新意識的關(guān)鍵,也是提高學(xué)生數(shù)學(xué)素質(zhì)關(guān)鍵所在。
(1) 注重抽象定理內(nèi)容的解釋,體現(xiàn)數(shù)學(xué)思想。證明顯沒有經(jīng)驗(yàn)的學(xué)生最害怕的事情,而教師對知識的解釋則相對受歡迎,因?yàn)榻忉屚ǔ1徽J(rèn)為不像證明那樣形式化。從另外一方面來說,一個(gè)好的解釋里實(shí)際包含了一個(gè)形式證明的重要思想,集中精力于解釋定理里所包含的數(shù)學(xué)思想而不是證明,這樣并沒有削弱對定理內(nèi)容的理解。我們重復(fù)一個(gè)被前人已證明過無數(shù)次的定理,學(xué)生對這個(gè)定理的內(nèi)容并不一定理解,我們真正的目標(biāo)是理解。、對于高中數(shù)學(xué)巾抽象內(nèi)容,要求教師形象解釋,使學(xué)生理解,通過解釋來理解這些內(nèi)容,而不是把重點(diǎn)放在證明。解釋其中包含的數(shù)學(xué)思想,了解其背后的數(shù)學(xué)精神,讓學(xué)生受到數(shù)學(xué)文化的熏陶,受到智慧的啟迪。
(2) 注意精講,幫助學(xué)生理解深度知識。學(xué)生的年齡特點(diǎn),知識經(jīng)驗(yàn)以及數(shù)學(xué)自身的特點(diǎn),決定了一些數(shù)學(xué)內(nèi)容需要深度講解。這些內(nèi)容包括學(xué)生對某-此數(shù)學(xué)概念未建立之前而自身需要主動(dòng)建構(gòu)這個(gè)知識框架的數(shù)學(xué)內(nèi)容;這些數(shù)學(xué)內(nèi)容包含大量的邏輯上沒有聯(lián)系且遠(yuǎn)離學(xué)生實(shí)際的事實(shí),一些重要概念或不加證明的公理等。這些內(nèi)容教師宜作深度講解,即采取精講的方法。對于高中數(shù)學(xué)中的導(dǎo)數(shù)概念、連續(xù)性、單調(diào)性、周期性定義等需要細(xì)致深入的精講,從其產(chǎn)生的知識背景及發(fā)展過程,以及數(shù)學(xué)家如何分析歸納這類現(xiàn)象和問題,而由此提出的新概念、新理論。從中把解決這類問題的過程、思想、力法展示給學(xué)生,以此建立相關(guān)概念并培養(yǎng)學(xué)生創(chuàng)新精神。
【關(guān)鍵詞】 函數(shù);導(dǎo)數(shù);恒成立;單調(diào)性;極值
在高中新課程中,函數(shù)是實(shí)際應(yīng)用最多的內(nèi)容之一,它是反映現(xiàn)實(shí)生活和其他學(xué)科規(guī)律的基本數(shù)學(xué)模型.函數(shù)作為高中數(shù)學(xué)的主要內(nèi)容,貫穿于整個(gè)教學(xué)的始終,而且大部分章節(jié)都涉及函數(shù)及其思想方法,其理論和應(yīng)用涉及數(shù)學(xué)的各個(gè)分支領(lǐng)域.
再從高考來看,數(shù)學(xué)主要有6大模塊,分別是三角函數(shù)、數(shù)列與不等式、立體幾何、圓錐曲線、概率統(tǒng)計(jì)和導(dǎo)數(shù).三角函數(shù)本身就是一類特殊的函數(shù),各種函數(shù)性質(zhì)都十分明顯;數(shù)列也可當(dāng)作特殊的函數(shù)(離散的函數(shù))來對待;不等式的各類解法中,有相當(dāng)一部分會(huì)利用到函數(shù)單調(diào)性等性質(zhì)來解答;立體幾何看似與函數(shù)沒有多大關(guān)系,但是一般情況下,理科的立體幾何會(huì)用到空間向量,而空間向量的很多解法和函數(shù)息息相關(guān);圓錐曲線在很大程度上需要借助于圖形建立一個(gè)方程,利用方程的思想來解題,因此圓錐曲線題在很大程度上可以認(rèn)為是一類特殊的函數(shù)題;概率統(tǒng)計(jì)中有許多類似于概率密度函數(shù)等與函數(shù)相關(guān)的概念,而統(tǒng)計(jì)方法中也會(huì)涉及相當(dāng)多的函數(shù)思想.
函數(shù)與各大模塊的關(guān)系都非常緊密,是整個(gè)高中數(shù)學(xué)的基礎(chǔ).高考中直接或間接與函數(shù)相關(guān)的考題,占到了100分左右,函數(shù)與導(dǎo)數(shù)屬于核心考點(diǎn),其地位不言而喻.所以說沒有學(xué)透函數(shù)的性質(zhì)相當(dāng)于沒有學(xué)好高中數(shù)學(xué),在高考中是很難取得好成績的.
比如在恒成立問題中,單調(diào)性常常是得力的工具.
例1 已知f(x)= a x -lnx,若f(x)≥5-3x恒成立,求實(shí)數(shù)a的取值范圍.
命題者提供的參考答案是:由f(x)≥5-3x得,a≥xlnx-3x2+5x.設(shè)g(x)=xlnx- 3x2+5x,則g′(x)=lnx-6x+6.設(shè)h(x)=g′(x),則h′(x)= 1-6x x ,h(1)=g′(1)=0.當(dāng)
在以上證明中,“當(dāng)x∈(0,1)時(shí),lnx
在解決壓軸題時(shí),若能及時(shí)轉(zhuǎn)換思路,將問題轉(zhuǎn)化成與之等價(jià)的、易于求解的問題,將會(huì)收到事半功倍的效果.下面略舉一例加以說明.
例2 已知函數(shù)g(x)= x lnx ,f(x)=g(x)-ax.
(1)若函數(shù)f(x)在(1,+∞)上是減函數(shù),求實(shí)數(shù)a的最小值.
(2)若x1,x2∈[e,e2],使f(x1)f′(x2)+a(a>0)成立,求實(shí)數(shù)a的取值范圍.
答案 (1)a的最小值為 1 4 (證明略).
(2):命題“若x1,x2∈[e,e2],使f(x1)f′(x2)+a(a>0)成立”等價(jià)于“當(dāng)x∈[e,e2]時(shí),有f(x)minf′(x)max+a”.當(dāng)x∈[e,e2]時(shí),2 ”.但是有相當(dāng)一部分學(xué)生對于“0
如果此時(shí)能及時(shí)轉(zhuǎn)換思路,進(jìn)一步將其轉(zhuǎn)化成等價(jià)命題,問題也就迎刃而解了.
“若x1,x2∈[e,e2],使f(x1)≤f′(x2)+a(a>0)成立”
從以上例子可以看出,數(shù)學(xué)問題中的思路轉(zhuǎn)換也很重要,它能夠把問題由復(fù)雜化為簡單,大大減少運(yùn)算量.由此可見,函數(shù)是學(xué)生學(xué)習(xí)的一個(gè)重點(diǎn),更是一個(gè)難點(diǎn).教師應(yīng)該從高一開始就培養(yǎng)學(xué)生的函數(shù)意識,在以后的學(xué)習(xí)過程中逐步認(rèn)識函數(shù)、理解函數(shù)、掌握函數(shù).這就需要教師在教學(xué)過程中站位要高,不僅要顧及到現(xiàn)今學(xué)段的內(nèi)容,更要對日后的學(xué)習(xí)有所鋪墊.高一數(shù)學(xué)主要是對一些基本初等函數(shù)的學(xué)習(xí),教師可多舉一些生活中的例子幫助學(xué)生學(xué)習(xí)掌握;高二數(shù)學(xué)主要是函數(shù)思想在不等式、直線、圓錐曲線等方面的簡單應(yīng)用;高三數(shù)學(xué)主要是運(yùn)用函數(shù)知識對6大知識模塊的整合與綜合運(yùn)用.
無論是新課教學(xué)還是復(fù)習(xí)課,都應(yīng)重視有關(guān)概念的理解和應(yīng)用.筆者認(rèn)為教學(xué)中應(yīng)注意以下幾個(gè)方面:
(1)抓住集合、映射、函數(shù)間的知識聯(lián)系,是函數(shù)教學(xué)的重點(diǎn)和難點(diǎn),只有抓住這條主線,才能使函數(shù)概念及有關(guān)內(nèi)容脈絡(luò)清楚.
(2)注重“數(shù)形結(jié)合”的教學(xué).
數(shù)形結(jié)合通過數(shù)與形之間的對應(yīng)和轉(zhuǎn)化來解決數(shù)學(xué)問題.在借助圖像研究函數(shù)的過程中,要讓學(xué)生經(jīng)歷繪制圖像的具體過程,提高學(xué)生的自主學(xué)習(xí)能力和思維水平.對于圖像,要抓住“作圖”和“變圖”兩個(gè)關(guān)鍵,以及變圖常用的幾種方式――平移、對稱、放縮、復(fù)合等.
(3)不等式和方程是求解函數(shù)問題的兩個(gè)工具,教學(xué)要使學(xué)生從函數(shù)的角度,由“數(shù)”到“形”的對方程(組)、不等式加深認(rèn)識,提高學(xué)生舊認(rèn)識的深度.
(4)函數(shù)式的恒等變形往往是函數(shù)壓軸題的突破口.
(5)掌握函數(shù)的單調(diào)性,奇偶性等性質(zhì)對解題十分有利,如例1的求解.
關(guān)鍵詞:高中數(shù)學(xué);函數(shù)與方程思想;直線
認(rèn)知主義學(xué)習(xí)理論將數(shù)學(xué)看成是對知識、規(guī)律逐漸發(fā)現(xiàn)與理解的過程,這就要求學(xué)習(xí)者在數(shù)學(xué)學(xué)習(xí)中不斷摸索,了解數(shù)學(xué)的精神,掌握其思想方法,尤其是與生活息息相關(guān)的函數(shù)與方程思想.建構(gòu)主義認(rèn)為,知識是主動(dòng)建構(gòu)的,不是被動(dòng)接受的,知識在每個(gè)學(xué)習(xí)者頭腦中都不是客觀存在的,而是由每個(gè)學(xué)習(xí)者主動(dòng)參與認(rèn)識活動(dòng)而主觀創(chuàng)造出來的.
一、函數(shù)與方程思想在導(dǎo)數(shù)中的應(yīng)用
導(dǎo)數(shù)在近幾年的高考中占據(jù)重要地位,而構(gòu)造函數(shù)與方程思想在導(dǎo)數(shù)中的應(yīng)用是各級、各類考試中的熱點(diǎn)問題.導(dǎo)數(shù)的單調(diào)性、極值、最值等性質(zhì)的研究常常和函數(shù)與方程思想相結(jié)合,主要綜合考查學(xué)生的思維能力.
例1 (2014南通三模)已知函數(shù)f(x)=(x-a)2ex在x=2時(shí)取得極小值.
(1)求實(shí)數(shù)a的值;
(2)是否存在區(qū)間[m,n],使得f(x)在該區(qū)間上的值域?yàn)閇e4m,e4n]?若存在,求出m,n的值;若不存在,說明理由.
解:a=2,過程略.
(2)因?yàn)閒(x)≥0,所以m≥0.
①若m=0,則x≥2,因?yàn)閒(0)=4
設(shè)g(x)=ex(x≥2),則g'(x)=+ex≥0,
所以g(x)在[2,+∞]上為增函數(shù).
由于g(4)=e4,即方程(n-2)2en=e4n有唯一解為n=4.
②若m>0,則2[m,n],即n>m>2或0
(Ⅰ)n>m>2時(shí),f(m)=(m-2)2em=e4mf(n)=(n-2)2en=e4n,
由①可知不存在滿足條件的m,n.
(Ⅱ)0
設(shè)h(x)=x(x-2)2ex(0
h(x)在(0,1)上遞增,在(1,2)上遞減,由h(m)=h(n)得0
綜上所述,滿足條件的m,n值只有一組,且m=0,n=4.
點(diǎn)評:利用導(dǎo)數(shù)研究函數(shù)的最值及其他性質(zhì)時(shí)都不可避免地會(huì)經(jīng)歷構(gòu)建方程的過程.這道題目的突破口是建立兩種情況下的方程組f(m)=(m-2)2em=e4mf(n)=(n-2)2en=e4n和(m-2)2em=e4n(n-2)2en=e4m然后分別再用函數(shù)研究,充分體現(xiàn)了函數(shù)與方程思想在解題的重要作用.
二、函數(shù)與方程思想在解析幾何中的應(yīng)用
在解析幾何的相關(guān)問題中,若遇到直線和圓、直線和圓錐曲線的位置關(guān)系,常常會(huì)聯(lián)立方程組研究,而遇到解析幾何中的最值問題時(shí)常常會(huì)用函數(shù)去研究.
例2 (2015年全國高中數(shù)學(xué)聯(lián)賽江蘇賽區(qū))如圖1,在平面直角坐標(biāo)系xoy中,圓O1,圓O2都與直線l∶y=kx及x軸正半軸相切.若兩圓的半徑之積為2,兩圓的一個(gè)交點(diǎn)為P(2,2),求直線l的方程.
解:由題意,圓心O1,O2都在x軸與直線l的角平分線上.
若直線l的斜率k=tanα,
設(shè)t=tan,則k=.
圓心O1,O2在直線y=tx上,
可設(shè)O1(m,mt),O2(n,nt).
交點(diǎn)P(2,2)在第一象限,m,n,t>0.
所以,O1∶(x-m)2+(y-mt)2=(mt)2,O2∶(x-n)2+(y-nt)2=(nt)2,
所以(2-m)2+(2-mt)2=(mt)2(2-n)2+(2-nt)2=(nt)2,即m2-(4+4t)m+8=0n2-(4+4t)n+8=0,
所以m,n是方程x2-(4+4t)x+8=0的兩根,mn=8.
由半徑的積(mt)(nt)=2,得t2=,故t=.所以k==, 直線l∶y=x.
點(diǎn)評:這道題考查了直線的方程、圓的方程等知識,考查了方程思想的應(yīng)用.由直線l的方程,可以引進(jìn)參數(shù)t,建立的直線O1O2的方程.再根據(jù)過點(diǎn)P(2,2)建立方程組,滲透了方程組的思想,但是在整個(gè)問題的解決過程中自始至終都滲透了建立關(guān)于參數(shù)t的方程的思想.
希爾伯特說過:數(shù)學(xué)學(xué)科是一個(gè)不可分割的有機(jī)整體,它的生命力正在于各個(gè)部分之間的聯(lián)系.函數(shù)與方程思想固然重要,但是也離不開與其他思想方法的聯(lián)系,要想學(xué)好數(shù)學(xué),攻克解題難關(guān)就必須掌握好各種基本知識、方法、思想之間的聯(lián)系.學(xué)生在解題過程中,認(rèn)真分析各個(gè)條件及各個(gè)條件之間的聯(lián)系,嘗試用數(shù)學(xué)思想方法找到解題方向.所以僅僅教會(huì)學(xué)生知識和方法是遠(yuǎn)遠(yuǎn)不夠的,沒有思想方法的提煉和融會(huì)貫通是走不遠(yuǎn)的,函數(shù)與方程思想是高考考查的重點(diǎn)和難點(diǎn),教師在平常的教學(xué)過程中,要不斷地滲透給學(xué)生,還要注意和各種思想方法綜合使用.
三、函數(shù)在數(shù)列問題中的應(yīng)用
函數(shù)與數(shù)列之間存在一定的關(guān)系,而在數(shù)列問題的解決中函數(shù)能夠發(fā)揮積極的作用。如設(shè){an}為等差數(shù)列,它的公差為d,前n項(xiàng)和為Sn,已知a3=12,S12>0,S130,S13=13a1+78d=156+52d
四、函數(shù)與方程思想在不等式中的應(yīng)用
不等式2x-1>m(x2-1)能夠?qū)≤2的一切實(shí)數(shù)m恒成立,求得實(shí)數(shù)x的取值范圍。對于不等式這種問題,了解關(guān)于x的不等式后,這種問題會(huì)形成一種思維定式,但是應(yīng)該進(jìn)行視角的改變,把不等式當(dāng)做關(guān)于m的不等式,并且構(gòu)造函數(shù)f(m)=(x2-1)m-(2x-1),這一問題就會(huì)轉(zhuǎn)化為求得m∈[-2,2]上,使f(m)
五、函數(shù)與方程思想在實(shí)際問題中的應(yīng)用
例如,有這樣的實(shí)際問題:某班的20名同學(xué)在直線公路上栽樹,每人植一棵,而且相鄰兩棵樹的距離為10米。在開始過程中,需要把樹苗集中放在某一個(gè)樹坑旁邊,能夠讓每位同學(xué)領(lǐng)取樹苗所用的路程總和最小,求這個(gè)最小值。對于這一問題來說,應(yīng)該建立合適的數(shù)學(xué)模型,通過列式向函數(shù)的最值問題轉(zhuǎn)化。如圖2所示。
圖2
假設(shè)樹苗放在第i個(gè)樹坑旁邊,因此各個(gè)樹坑到第i個(gè)樹坑的距離總和為:
s=(i-1)×10+(i-2)×10+…+(i-i)×10+[(i+1)-i]×10+…+(20-i)×10=10×i×i--i×(20-i)+=10(i2-21i+210)
【關(guān)鍵詞】導(dǎo)數(shù);函數(shù);單調(diào)性;最值;數(shù)列
高考熱點(diǎn)詞導(dǎo)數(shù)在高中階段處于一種特殊的地位,是聯(lián)系高等數(shù)學(xué)與初等數(shù)學(xué)的紐帶,是高中數(shù)學(xué)知識的一個(gè)重要交匯點(diǎn),是聯(lián)系多個(gè)章節(jié)內(nèi)容以及解決相關(guān)問題的重要工具.本文通過對導(dǎo)數(shù)在中學(xué)數(shù)學(xué)解題應(yīng)用中的探討,拓展學(xué)生的解題思路,提高學(xué)生分析問題和解決問題的能力.
1.導(dǎo)數(shù)在求函數(shù)零點(diǎn)中的應(yīng)用
零點(diǎn)問題即求函數(shù)圖像與x軸交點(diǎn)的個(gè)數(shù),解決此類問題就是利用數(shù)形結(jié)合及零點(diǎn)存在性定理.
例1 (2012年高考福建文)已知函數(shù)f(x)=axsinx-32,(a∈R),且在0,π2上的最大值為π-32.
(Ⅰ)求函數(shù)f(x)的解析式;(Ⅱ)判斷函數(shù)f(x)在(0,π)內(nèi)的零點(diǎn)個(gè)數(shù),并加以證明.
解析 (Ⅰ)f′(x)=asinx+xcosx,x∈0,π2,sinx+xcosx>0,當(dāng)a=0時(shí),f(x)=-32,不合題意;當(dāng)a0,f(x)單調(diào)遞增,f(x)max=fπ2=π-32.a=1.綜上f(x)=xsinx-32.
(Ⅱ)f(x)在(0,π)上有兩個(gè)零點(diǎn).證明如下:由(Ⅰ)知f(x)=xsinx-32,f(0)=-3[]20,f(x)在0,π2上至少有一個(gè)零點(diǎn).又由(Ⅰ)知f(x)在0,π2上單調(diào)遞增,故在0,π2上只有一個(gè)零點(diǎn),當(dāng)x∈π2,π時(shí),令g(x)=f′(x)=sinx+xcosx,則gπ2=1>0,g(π)=-π0,f(x)遞增,當(dāng)m∈π2,π時(shí),f(x)≥fπ2=π-32>0.f(x)在(m,π)上遞增.f(m)>0,f(π)
點(diǎn)評 本題主要考查函數(shù)的最值、零點(diǎn)、單調(diào)性等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力、考查函數(shù)與方程思想、數(shù)形結(jié)合思想、分類討論思想、轉(zhuǎn)化化歸思想.
2.導(dǎo)數(shù)在求函數(shù)的最(極)值中的應(yīng)用
求函數(shù)的最(極)值是高中數(shù)學(xué)的重點(diǎn),也是難點(diǎn),是高考經(jīng)常要考查的內(nèi)容之一,它涉及了函數(shù)知識的很多方面,用導(dǎo)數(shù)解決這類問題可以使解題過程簡化,步驟清晰,也容易掌握,從而進(jìn)一步明確了函數(shù)的性態(tài).一般地,函數(shù)f(x)在閉區(qū)間a,b上可導(dǎo),則f(x)在a,b上的最值求法:求可導(dǎo)函數(shù)f(x)的極值的一般步驟和方法是:
①求導(dǎo)數(shù)f′(x);②求方程f′(x)=0的根;③檢驗(yàn)f′(x)在方程f′(x)=0的根的左右符號,如果在根的左側(cè)附近為正,右側(cè)附近為負(fù),那么函數(shù)y=f(x)在這個(gè)根處取得極大值;如果在根的左側(cè)附近為負(fù),右側(cè)附近為正,那么函數(shù)y=f(x)在這個(gè)根處取得極小值.
對于在[a,b]連續(xù),在(a,b)可導(dǎo)的函數(shù)f(x)的最值的求解,可先求出函數(shù)在(a,b)上的極大(小)值,并與f(a),f(b)比較即可得出最大(小)值.
例2 (2012年高考重慶文)已知函數(shù)f(x)=ax3+bx+c在x=2處取得極值為c-16.
(1)求a,b的值;(2)若f(x)有極大值28,求f(x)在[-3,3]上的最大值.
解析 (Ⅰ)因f(x)=ax3+bx+c,故f′(x)=3ax2+b.由于f(x)在點(diǎn)x=2處取得極值,
故有f′(2)=0,f(2)=c-16,即12a+b=0,8a+2b+c=c-16,化簡得12a+b=0,4a+b=-8,解得a=1,b=-12.
(Ⅱ)由(Ⅰ)知 f(x)=x3-12x+c,f′(x)=3x2-12,令f′(x)=0,得x1=-2,x2=2.當(dāng)x∈(-∞,-2)時(shí),f′(x)>0,故f(x)在(-∞,-2)上為增函數(shù);當(dāng)x∈(-2,2)時(shí),f′(x)0,故f(x)在(2,+∞)上為增函數(shù).
由此可知f(x)在x1=-2處取得極大值f(-2)=16+c,f(x)在x2=2處取得極小值f(2)=c-16.由題設(shè)條件知16+c=28,得c=12,此時(shí)f(-3)=9+c=21,f(3)=-9+c=3,f(2)=c-16=-4,因此f(x)上[-3,3]的最小值為f(2)=-4.
點(diǎn)評 本題主要考查函數(shù)的導(dǎo)數(shù)與極值、最值之間的關(guān)系,屬于導(dǎo)數(shù)的應(yīng)用.①先對函數(shù)f(x)進(jìn)行求導(dǎo),根據(jù)f′(2)=0,f(2)=c-16.求出a、b的值.(2)通過列表比較函數(shù)的極值與端點(diǎn)函數(shù)值的大小,端點(diǎn)函數(shù)值與極大值中最大的為函數(shù)的最大值,端點(diǎn)函數(shù)值與極小值中最小的為函數(shù)的最小值.
3.導(dǎo)數(shù)在單調(diào)性上的應(yīng)用
函數(shù)的單調(diào)性是函數(shù)的一個(gè)重要性質(zhì),是研究函數(shù)時(shí)經(jīng)常要注意的一個(gè)性質(zhì).函數(shù)的單調(diào)性與函數(shù)的導(dǎo)數(shù)密切相關(guān),運(yùn)用導(dǎo)數(shù)知識來討論函數(shù)單調(diào)性時(shí),結(jié)合導(dǎo)數(shù)的幾何意義,只需考慮f′(x)的正負(fù)即可,當(dāng)f′(x)>0時(shí),f(x)單調(diào)遞增;當(dāng)f′(x)
例3 (2012年高考山東文)已知函數(shù)f(x)=lnx+kek(k為常數(shù),e=2.71828是自然對數(shù)的底數(shù)),曲線y=f(x)在點(diǎn)1,f(1)處的切線與x軸平行.
(Ⅰ)求k的值;(Ⅱ)求f(x)的單調(diào)區(qū)間;(Ⅲ)略.
解析 (Ⅰ)f′(x)=1x-lnx-kex,由已知,f′(1)=1-ke=0,k=1.
(Ⅱ)由(Ⅰ)知,f′(x)=1x-lnx-kex.設(shè)k(x)=1x-lnx-1,則k′(x)=-1x2-1x1時(shí)k(x)
點(diǎn)評 本題主要是切線定義的理解及單調(diào)性的簡單應(yīng)用,特別注意函數(shù)的定義域,此題型應(yīng)熟練掌握.
4.導(dǎo)數(shù)在求切線方程中的應(yīng)用
此種題型分為點(diǎn)在曲線上和點(diǎn)在曲線外兩種情況,f′(x0)的幾何意義就是曲線在點(diǎn)P(x0,f(x0))處切線的斜率,過P點(diǎn)的切線方程為y-f(x0)=f′(x0)(x-x0),但應(yīng)注意點(diǎn)P(x0,f(x0))在曲線y=f(x)上,否則易錯(cuò).
例4 (2012年高考廣東理)曲線y=x3-x+3在點(diǎn)1,3處的切線方程為 .
解析 y′=3x2-1,當(dāng)x=1時(shí),y′=2,此時(shí)k=2,故切線方程為y-3=2(x-1),即2x-y+1=0.
點(diǎn)評 本小題弄清楚點(diǎn)是否在曲線上,然后再用求導(dǎo)的方法求切線.如本題改成在0,1處切線方程又該如何求呢,留給讀者自行證明.
5.導(dǎo)數(shù)在不等式證明中的應(yīng)用
例5 (2012年高考遼寧文)設(shè)f(x)=lnx+x-1.
證明:(Ⅰ)當(dāng)x>1時(shí),f(x)
解析 (Ⅰ)(法1)記g(x)=lnx+x-1-3[]2(x-1),則當(dāng)x>1時(shí),g′(x)=1[]x+1[]2x-3[]2
g(x)
(法2)由均值不等式,當(dāng)x>1時(shí),2x
令k(x)=lnx-x+1,則k(1)=0,k′(x)=1[]x-1
k(x)
由①②得,當(dāng)x>1時(shí),f(x)
(Ⅱ)(法1)記h(x)=f(x)-9(x-1)[]x+5,由(Ⅰ)得,
h′(x)=1[]x+1[]2x-54[](x+5)2=2+x[]2x-54[](x+5)2
令g(x)=(x+5)3-216x,則當(dāng)1
(法2)記h(x)=(x+5)f(x)-9(x-1),則當(dāng)1
點(diǎn)評 本題主要考查導(dǎo)數(shù)公式,以及利用導(dǎo)數(shù),通過函數(shù)的單調(diào)性與最值來證明不等式,考查轉(zhuǎn)化思想、推理論證能力、運(yùn)算能力、應(yīng)用所學(xué)知識解決問題的能力,難度較大.
6.導(dǎo)數(shù)在數(shù)列問題中的應(yīng)用
數(shù)列求和是數(shù)學(xué)中比較常見的問題,也是學(xué)生難以掌握的問題,既可用常規(guī)方法求數(shù)列的和,也可借助導(dǎo)數(shù)這一工具,用導(dǎo)數(shù)的相關(guān)性質(zhì)來解決此類問題,常可化繁為簡,化難為易.
例6 求1+2x+3x2+…+nxn-1,(x≠0,x≠1,n∈N*).
解析 因x+x2+x3+…+xn=x-xn+11-x,兩邊都是關(guān)于x的函數(shù),兩邊求導(dǎo)得
關(guān)鍵詞: 新課標(biāo) 高中數(shù)學(xué) 數(shù)列問題
引言
高中數(shù)學(xué)一直是高中學(xué)生公認(rèn)的學(xué)習(xí)難點(diǎn),它在高考中占有無比重要的地位,而高中數(shù)學(xué)中的數(shù)列問題一直是教學(xué)的難點(diǎn)。新課標(biāo)實(shí)行以來,高中數(shù)學(xué)數(shù)列學(xué)習(xí)仍然是數(shù)學(xué)教學(xué)的關(guān)鍵,因?yàn)閿?shù)列與我們的生活有著十分密切的關(guān)系,能夠很好地解決實(shí)際生活中產(chǎn)生的問題。為了促進(jìn)學(xué)生正確認(rèn)識數(shù)列在數(shù)學(xué)學(xué)習(xí)中的重要性,新課標(biāo)對教師數(shù)列的教學(xué)任務(wù)有了更嚴(yán)格的要求,促使教師重新樹立教學(xué)理念,認(rèn)真抓住數(shù)列的教學(xué)重點(diǎn),不斷提高高中數(shù)學(xué)教學(xué)效率,確保學(xué)生在學(xué)習(xí)過程中能更牢固地掌握數(shù)列知識[1]。
1.新課標(biāo)中數(shù)列的教學(xué)地位
新課標(biāo)要求將關(guān)于數(shù)列的教學(xué)內(nèi)容作為高中數(shù)學(xué)的教學(xué)重點(diǎn),并要求教師在教學(xué)過程中對數(shù)列的基本識進(jìn)行詳細(xì)講解分析。由于學(xué)生在高中階段初次接觸數(shù)列知識,那么教師在數(shù)列教學(xué)中就要從基礎(chǔ)知識入手。人教版高中新課程標(biāo)準(zhǔn)中將數(shù)列安排在了第二章,共占12課時(shí),作為數(shù)學(xué)學(xué)習(xí)的獨(dú)立章節(jié),足可以看出數(shù)列在高中數(shù)學(xué)中的教學(xué)地位。數(shù)列的重要性源于它與很多數(shù)學(xué)知識存在聯(lián)系,例如高中數(shù)學(xué)中函數(shù)、不等式、方程式的學(xué)習(xí)都離不開數(shù)列,數(shù)列是學(xué)生學(xué)習(xí)其他數(shù)學(xué)知識的重要橋梁和紐帶,具有重要的連接作用。學(xué)習(xí)數(shù)列可以鍛煉學(xué)生獨(dú)特的思維方法,譬如函數(shù)和方程式、分類討論、類比歸納、整體帶入等數(shù)學(xué)中重要的思想和學(xué)習(xí)方法。數(shù)列還普遍應(yīng)用于實(shí)際生活中,例如,儲(chǔ)蓄、分期付款、人口增長等問題的解決都依賴于數(shù)列學(xué)習(xí),所以數(shù)列并非遙不可及,它與我們的生活有著千絲萬縷的聯(lián)系。
2.數(shù)列的學(xué)習(xí)重點(diǎn)和難點(diǎn)
數(shù)列與函數(shù)有著密不可分的關(guān)系,因?yàn)樗哂泻瘮?shù)的一般性質(zhì),是一種特殊的函數(shù),學(xué)生在學(xué)習(xí)時(shí)需要用函數(shù)的觀點(diǎn)對數(shù)列進(jìn)行探討。數(shù)列中的屬性和項(xiàng)數(shù)是高中數(shù)學(xué)學(xué)習(xí)的重點(diǎn),學(xué)好數(shù)列的前提是必須熟練掌握數(shù)列求和的基本方法和遞進(jìn)關(guān)系[2]。數(shù)列中的教學(xué)難點(diǎn)是關(guān)于不等式和函數(shù)及遞推數(shù)列的解決方法。數(shù)列中的函數(shù)性質(zhì)常常是考點(diǎn),教師應(yīng)注重?cái)?shù)列與函數(shù)相關(guān)的教學(xué)內(nèi)容,學(xué)好高中數(shù)學(xué)中的數(shù)列問題有益于提高學(xué)生的綜合數(shù)學(xué)能力,促進(jìn)學(xué)生成績的提高。
3.新課標(biāo)下數(shù)列問題的解題策略
學(xué)生要學(xué)好數(shù)列問題首先必須牢記數(shù)列中的各種公式,并能夠熟練運(yùn)用,解決數(shù)列問題是沒有捷徑可以走的,只能根據(jù)具體的對題目的分析直接將公式帶入運(yùn)算。在一些題目中,靈活利用數(shù)列的常見性質(zhì)不僅可以快速對數(shù)列題目進(jìn)行解答,還能在答題過程中增強(qiáng)學(xué)生自信心,提高學(xué)生學(xué)習(xí)興趣。高考中常常會(huì)考查學(xué)生等差數(shù)列和等比數(shù)列的解法,這時(shí)運(yùn)用累加法和累乘法推導(dǎo)數(shù)列問題是不錯(cuò)的解題方法。
4.學(xué)習(xí)數(shù)列可以培養(yǎng)學(xué)生的綜合學(xué)習(xí)能力
4.1培養(yǎng)學(xué)生的創(chuàng)新思維和推理能力
數(shù)列具有一定的推理性,要想學(xué)好數(shù)列就必須重視對其中數(shù)據(jù)的總結(jié)和歸納。數(shù)列的學(xué)習(xí)可以有效鍛煉學(xué)生的推理能力,使其在學(xué)習(xí)過程中不斷對問題進(jìn)行推導(dǎo)和假設(shè),促進(jìn)學(xué)生思維能力的提高。對于在題目中沒有發(fā)現(xiàn)一定等差或等和規(guī)律的問題,學(xué)生可以充分發(fā)揮想象力,大膽作出假設(shè),在此基礎(chǔ)上進(jìn)行歸納判斷,并在此基礎(chǔ)上對自己的想法加以論證。合理的假設(shè)可以為問題的解決方法提供線索,為學(xué)生得出正確的結(jié)論提供幫助,有利于促進(jìn)學(xué)生創(chuàng)新意識的提高。
4.2培養(yǎng)學(xué)生的推理論證能力和數(shù)學(xué)應(yīng)用能力
對數(shù)學(xué)結(jié)論的合理論證是高中數(shù)學(xué)的教學(xué)重點(diǎn),其在解決數(shù)學(xué)難題方面發(fā)揮著重要作用,教師在教學(xué)過程中應(yīng)注意培養(yǎng)學(xué)生對于數(shù)學(xué)定理及公式的推理論證能力。學(xué)生在解答數(shù)列過程中應(yīng)注意培養(yǎng)自己嚴(yán)密的數(shù)學(xué)邏輯思維能力,這不僅是學(xué)習(xí)數(shù)列的基本條件,而且是整個(gè)高中數(shù)學(xué)學(xué)習(xí)必備的基本能力之一。數(shù)列問題其實(shí)就是實(shí)際應(yīng)用問題,數(shù)列學(xué)習(xí)離不開實(shí)際應(yīng)用,學(xué)生只有熟練應(yīng)用才能有把握解決高考中的類似問題。因此,學(xué)生在日常生活中必須增強(qiáng)應(yīng)用意識,以數(shù)列顯示數(shù)學(xué)與生活的緊密聯(lián)系,只有增強(qiáng)數(shù)列的實(shí)際應(yīng)用能力,才能在高考中得心應(yīng)手地解決以數(shù)列為背景的實(shí)際問題。
5.高中數(shù)學(xué)數(shù)列教學(xué)的方法探究
5.1優(yōu)化數(shù)列教學(xué)方案
數(shù)列、一般數(shù)列、等差數(shù)列、等比數(shù)列是高中數(shù)學(xué)數(shù)列主要的教學(xué)內(nèi)容,而其中以等差數(shù)列和等比數(shù)列是數(shù)列教學(xué)內(nèi)容中的重點(diǎn)。在新課標(biāo)要求下,教師通過優(yōu)化教學(xué)方案設(shè)計(jì)解決教學(xué)問題,形成新的教學(xué)方案,并在其實(shí)施后及時(shí)對教學(xué)效果及質(zhì)量進(jìn)行分析,判斷其實(shí)施的價(jià)值,并對操作過程進(jìn)行優(yōu)化。這種優(yōu)化教學(xué)方案的過程,能夠提高教學(xué)成果,創(chuàng)造出更合理高效的教學(xué)方案[3]。
5.2注重學(xué)生學(xué)習(xí)需求
學(xué)生是學(xué)習(xí)的主體,為學(xué)生服務(wù)是課堂教學(xué)的最終目的。在新課標(biāo)下,教師應(yīng)充分認(rèn)識到,學(xué)生才是教育的主體,課堂教學(xué)應(yīng)該重視學(xué)生的學(xué)習(xí)需求,對他們進(jìn)行差別化教育。由于學(xué)生在學(xué)習(xí)時(shí)存在接受能力、對數(shù)列的認(rèn)知能力及知識結(jié)構(gòu)等方面的差異,因此以老師在教學(xué)時(shí)不能一概而論,對于那些接受能力較弱的學(xué)生,老師要盡量使用傳統(tǒng)的教學(xué)方法引導(dǎo)他們發(fā)現(xiàn)數(shù)列的運(yùn)用規(guī)律及特點(diǎn),對于一些學(xué)習(xí)優(yōu)秀的學(xué)生老師可以放手讓他們練習(xí)一些有一定難度的題目。這樣不但可以因材施教,讓他們根據(jù)自己的情況進(jìn)行不同的訓(xùn)練,還可以避免成績不好的學(xué)生對學(xué)習(xí)數(shù)列產(chǎn)生畏懼心理。只有從學(xué)生的具體需要出發(fā)對教學(xué)方式進(jìn)行創(chuàng)新,才能夠取得良好的教學(xué)效果。
結(jié)語
高中數(shù)學(xué)數(shù)列的學(xué)習(xí)非常重要,教師只有不斷在新課程理念下對數(shù)列的教學(xué)方法和教學(xué)手段進(jìn)行創(chuàng)新和改進(jìn),始終以提高學(xué)生的數(shù)學(xué)素養(yǎng)為目標(biāo),并根據(jù)實(shí)際情況的需要,選用合適的教學(xué)模式,積極探究創(chuàng)新高中數(shù)學(xué)數(shù)列的教學(xué)方法,才能從根本上提高學(xué)生的學(xué)習(xí)效率。
參考文獻(xiàn):
[1]孔祥勇,楊瓊芬,羅守雙.《數(shù)學(xué)分析》教學(xué)與新課標(biāo)下高中數(shù)學(xué)的銜接研究[J].綿陽師范學(xué)院學(xué)報(bào),2012(08).
1.教學(xué)要體現(xiàn)整體性和系統(tǒng)性
初高中數(shù)學(xué)課程的知識體系有所不同,但結(jié)構(gòu)相似,都遵循了數(shù)學(xué)學(xué)科本身的邏輯順序,這為整體把握初高中數(shù)學(xué)課程提供了客觀條件。如初中“函數(shù)”的教學(xué),不僅要把“函數(shù)”放在“數(shù)式方程不等式函數(shù)常見函數(shù)”的結(jié)構(gòu)體系中,而且要把它放在高中課程以“函數(shù)”為核心的模塊框架體系中,因?yàn)榉匠獭⒉坏仁健⒕€性規(guī)劃、常見函數(shù)、解析幾何和導(dǎo)數(shù)等都是圍繞“函數(shù)”展開的。
2.教學(xué)要體現(xiàn)基礎(chǔ)性、聯(lián)系性、統(tǒng)一性、全局性和一致性
初中課程要做好對高中課程相關(guān)內(nèi)容的基礎(chǔ)性、聯(lián)系性和全局性的前期工作,以實(shí)現(xiàn)前后內(nèi)容的統(tǒng)一性和一致性。如初中“有理數(shù)”的教學(xué),不僅要把它放在“自然數(shù)有理數(shù)實(shí)數(shù)復(fù)數(shù)(高中)……”的數(shù)域發(fā)展中,而且要將它的發(fā)生發(fā)展過程及其本質(zhì),以及所滲透的運(yùn)算主線思想貫穿在整個(gè)數(shù)域的研究中。
3.教學(xué)要體現(xiàn)數(shù)學(xué)思想方法的統(tǒng)一性
初高中數(shù)學(xué)課程中許多的思想和方法,如初中的換元法、圖形變換法以及高中的函數(shù)法、向量法、參數(shù)法等在思想方法上均屬于關(guān)系映射反演方法。教學(xué)中要將初高中相關(guān)內(nèi)容所滲透的統(tǒng)一的數(shù)學(xué)本質(zhì)挖掘出來,上升為數(shù)學(xué)思想方法,提升對初高中數(shù)學(xué)課程的整體把握。
4.教學(xué)要體現(xiàn)核心概念所滲透的思想方法
以核心概念為綱,樹立整體觀和系統(tǒng)觀思想。教學(xué)中,學(xué)生通過類比、推廣、特殊化、化歸等思想方法的遷移,體會(huì)知識之間的有機(jī)聯(lián)系,樹立起對知識的整體觀和系統(tǒng)觀,實(shí)現(xiàn)常用的邏輯思考方法:橫向類比,縱向推廣,學(xué)會(huì)數(shù)學(xué)地思考問題。
以點(diǎn)帶面,加強(qiáng)滲透研究數(shù)學(xué)問題的一般方法。作為數(shù)學(xué)核心概念,應(yīng)把研究數(shù)學(xué)問題的基本方法作為核心目標(biāo),加強(qiáng)滲透數(shù)學(xué)研究對象的基本方法、研究內(nèi)容及其數(shù)學(xué)思想方法的教學(xué),從而獲得研究數(shù)學(xué)問題的一般方法,培養(yǎng)學(xué)生的理性精神和創(chuàng)新能力。如高中“向量數(shù)量積的物理背景與定義”的教學(xué),學(xué)習(xí)的最好方法是經(jīng)歷數(shù)學(xué)建模的過程。另外,教學(xué)中滲透認(rèn)識事物的一般方法:特殊一般特殊,即以“功”為特殊背景,通過類比概括出數(shù)學(xué)概念,再通過特殊化推出其一般性質(zhì),并能解決一些實(shí)際問題。
運(yùn)用每一章的引言,整體把握核心概念的研究方法。對于每一章起始課,應(yīng)介紹其數(shù)學(xué)發(fā)展史,了解數(shù)學(xué)對象產(chǎn)生的背景、必要性及其地位和作用,重點(diǎn)是核心概念所滲透的思想方法和研究數(shù)學(xué)對象的一般方法,形成對研究對象的統(tǒng)一性認(rèn)識。如高中“解析幾何”的起始課,可向?qū)W生介紹解析幾何產(chǎn)生的歷史背景,坐標(biāo)法思想,初步感受解析幾何的核心思想:幾何問題代數(shù)化。同樣,在初中教學(xué)中,凡涉及介紹一個(gè)新的數(shù)學(xué)對象時(shí)均可采用這種方法,從而整體把握一個(gè)數(shù)學(xué)對象的研究方法。